Microchannel Fuel Processing

Fuel Cells for Transportation/Fuels for Fuel Cells
2002 Annual Program/Lab R&D Review
May 6-10, 2002

Kriston Brooks, Jim Davis, Chris Fischer,
Adam Heintzelman, Dave King, Larry Pederson, Susie Stenkamp,
Ward Tegrotenhuis, Bob Wegeng, Greg Whyatt

Pacific Northwest National Laboratory

Objectives

Approach

 Demonstrate at ~1/10 scale a microchannel-based fuel processing system that meets FreedomCAR performance targets.

Performance Criteria	Current Performance	2004 FreedomCAR Targets
50 kWe System Volume	<1 cubic foot (<28L)	2.5 cubic foot (71 L)
Power Density, Specific Power	1800 W/L, 320 W/kg	700 W/L, 700 W/kg
System Efficiency	81%	76%
Durability	>1000 h	4000 h
Transient Response (10 to 90%)	5 s	5 s
Start-Up to Full Power, 20°C	30 s (low dP projection), 15 m (current reactor block)	<1 min
Steady State CO Content	15 ppm	10 ppm

- Engage industrial partner(s) to facilitate development of full scale fuel processing system.
- Develop reactors, vaporizers, recuperative heat exchangers, and condensers broadly applicable to other fuel processing options.

Steam Reformation

- Improve power density, specific power
- Demonstrate fuel flexibility, transient response, 1000-hour durability (catalyst and reactor)
- Redesign for rapid startup

Water Gas Shift Reactor

- Differential temperature design reduces reactor size
- Collaborate on catalyst formulations from industry

Preferential Oxidation Reactor

Investigate advantages of microchannel design

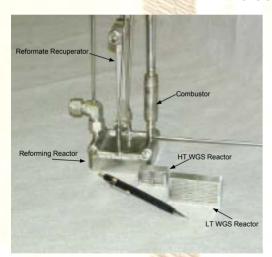
U.S. Department of Energy

FY 1998
Full-size gasoline vaporizer/combustor
R&D100 Award

Project Timeline

FY 1999
Fast SR kinetics
demonstrated in a
microchannel reactor

FY 2000

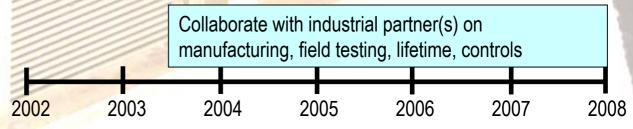

Designed and built

10 kWe SR with integrated

HX network

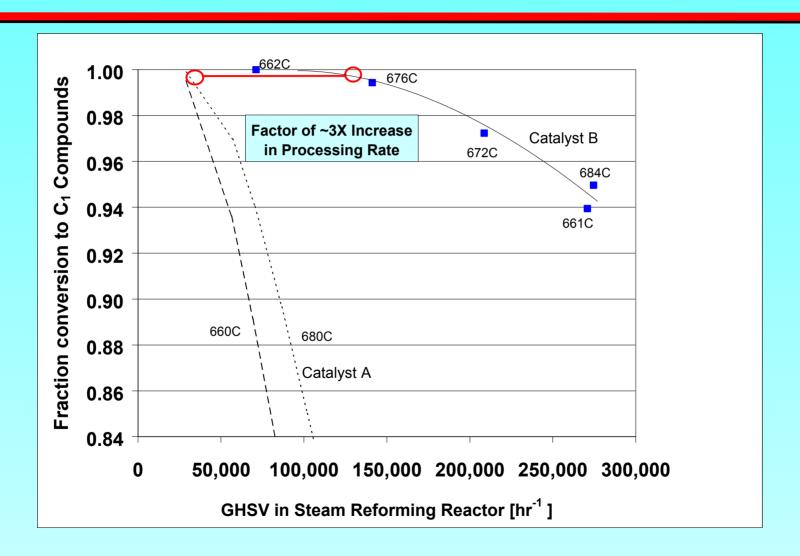
FY2001
10 kWe reactor testing
First "low dP" vaporizers
Modular test stand established

FY 2002

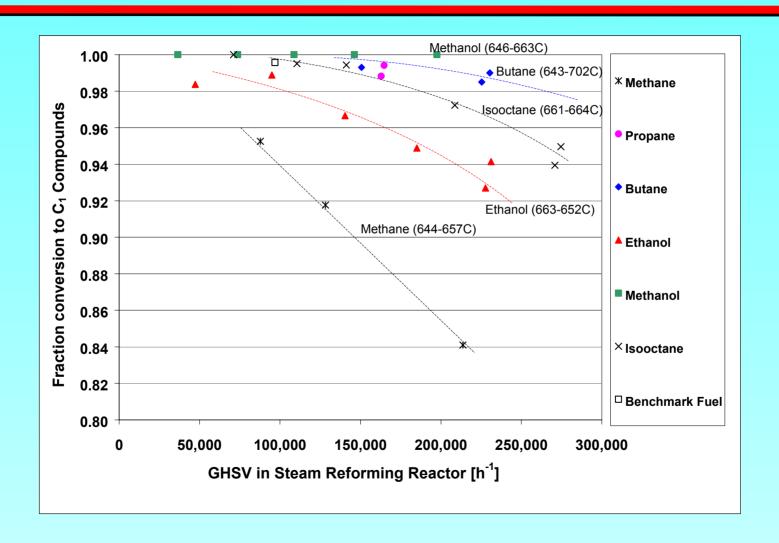

SR fuel flexibility, durability testing
WGS/PROX catalyst studies
Differential temperature reactor concept
SR/WGS/PROX initial integration
Full-scale low dP vaporizers delivered

Engineered catalyst, reactor development

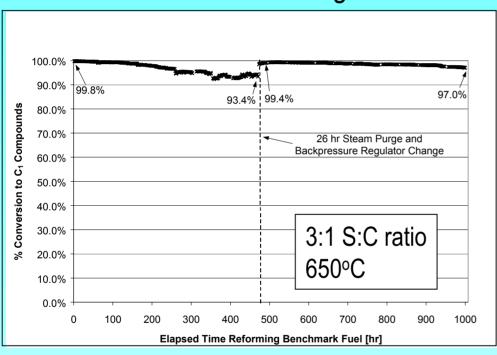
Demonstrate rapid startup


Sulfur management

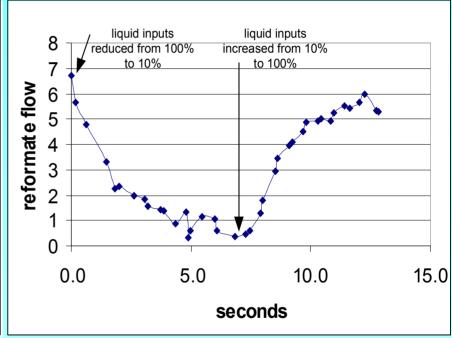
Integrated reformer/fuel cell demonstration at ~5 kWe


Reactor Volumetric Productivity Improved

(isooctane at 3:1 S:C / GHSV basis: 1atm, 25C, exit conditions, bulk catalyst volume)


Fuel Flexibility Demonstrated

(cat. "B", 3:1 O:C / GHSV basis: 1atm, 25C, exit composition, bulk catalyst volume)



Durability and Transient Response

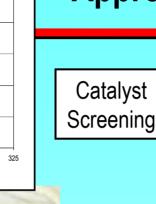
1000-Hour Reforming Test

5 Second Warm Transient Response

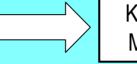
Benchmark 74 wt% isooctane
Fuel 20 wt% xylene
5 wt% methyl cyclohexane
1 wt% 1-pentene

Response to step changes in liquid fuel and water feed rates of 100% to 10% and 10% to 100% in 51 cc reactor

Water-Gas Shift Development

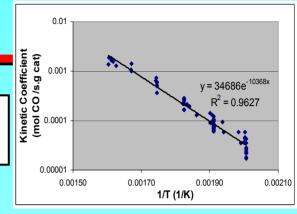


Air-Cooled


Gradient WGS Section

Manual

Adjustment Valves **Approach / Progress**

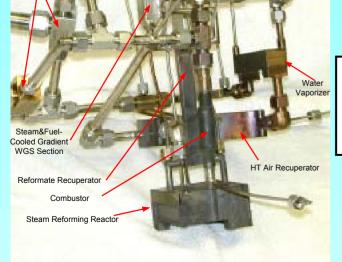


Fuel Vaporizer

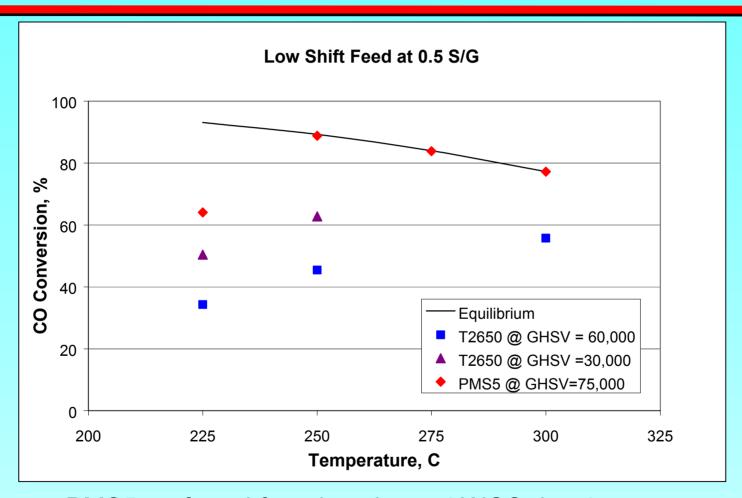

Kinetic Model

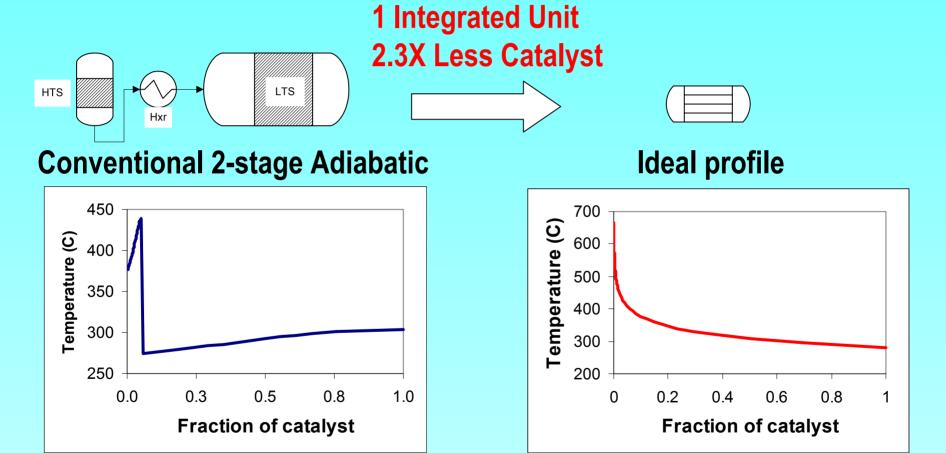
Surface temperature (T)

Reactor Modeling


460 400 360 360 300 250 200 150 100 50 35 3 25 2 15 1 05 0 05 1 15 2 wn 030

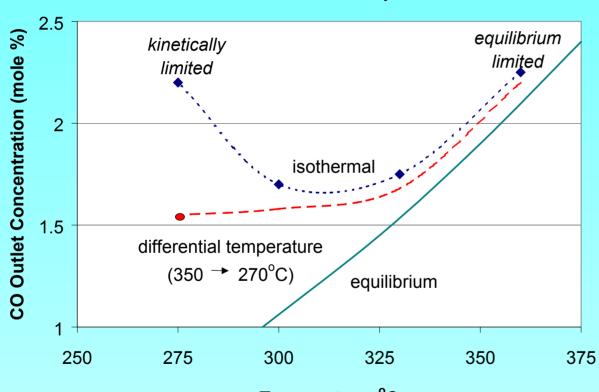
Integrate into system


Reactor Prototypes


WGS Catalyst Screening

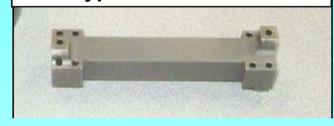
Sud-Chemie Copper-Zinc (T2650) and Precious Metal/Ceria (PMS5)

PMS5 preferred for microchannel WGS development


Water-Gas Shift Why microchannels? – To control temperature profile

Based on Sud-Chemie PMS5 PM catalyst and SR reformate

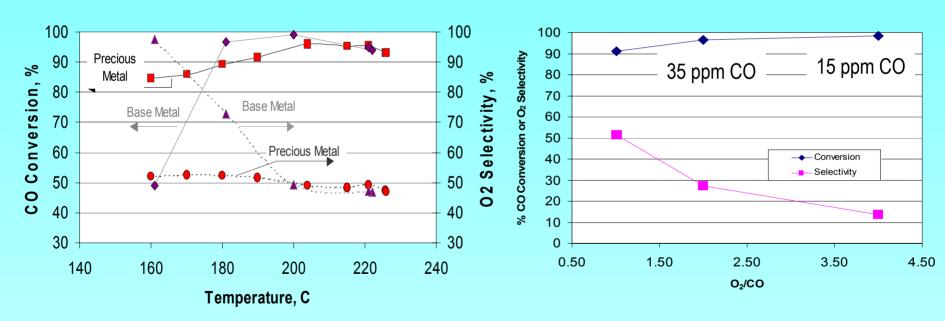
Differential Temperature Water-Gas Shift Reactor volume < 3L projected from experimental results


150,000 GHSV, 0.5 Steam/Dry Gas, 4.6% CO Feed

Temperature, °C

Differential temperature out performs isothermal operation

Prototype 7-channel Reactor



Reactor can be operated isothermally or with a temperature gradient

Performance of Engineered PROX Catalysts

Stage 1 PROX, Precious and Base Metal Catalysts; 1% CO, O2/CO = 1, GHSV = 400K, S/G = 0.3

Stage 2 PROX Performance of Precious Metal Catalyst in a Single Channel Reactor: 0.1% CO, 100°C, GHSV = 200K; S/G=0.3

Base metal catalyst preferred for Stage 1; Precious metal catalyst preferred for Stage 2

Industry Interactions

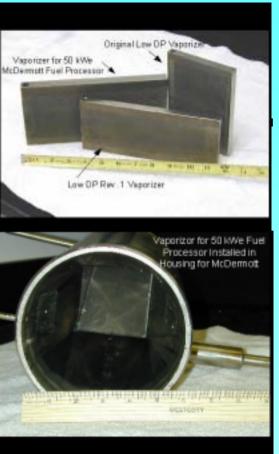
- Formally seeking to engage industrial partner
- ■Water Vaporizer for 50 kWe ATR designed, built, tested and delivered to McDermott Technology, Inc.
- Water Vaporizer delivered to Gas Technology Institute for boiler-related research, funded by OIT.
- ■Interaction with Engelhard, Süd Chemie, NexTech, and ANL for catalyst formulations
- Vaporizer and recuperator delivered to Innovatek for Army reformer demonstration

50 kWe Water Vaporizer Panel Size: dimensions 22.2 cm x 10 cm x 1.8 cm weight = 2.4 kg

At max operating point:

HX duty = 24.6 kW

HX intensity = 60 W/cm3


Sample Operating Point

Steam
225°C, 425 kPa abs.

Combustion Gas
685°C, 69.1 kg/h

Combustion Gas
157°C, ambient pressure
dP = 5 in. H₂O

Water
23°C, 4.08 q/s

Plans, Future Milestones

- Complete catalyst optimization (FY03)
- WGS, PROX reactor development and integration (FY03)
- High temperature reformation/sulfur tolerance study complete (FY02)
- Demonstrate rapid start-up concepts based on low dP design (FY03)
- Develop sulfur management approach (FY03)
- Engage industrial partner(s) to facilitate development (FY03)
- Demonstrate fast-start, integrated fuel processor at 5 kWe, and operate with a PEM fuel cell (FY04)

Rapid Cold Start Concept for Steam Reformer

- Low combustion gas dP key to rapid startup (30 second start projected)
- Target test system has four reformer stages with one water vaporizer

Key Data For 30-Second Startup Calculation - 2.4 kWe System

Component	Mass	∆P at Normal Cond. (~60 SLPM, Air)	∆P at Startup (~800 SLPM, Air)
Reforming Reactor, 650C (4 stages, 600We each)	720 g (180 g, per stage)	1.6 in H_2O (0.4 in H_2O , per stage)	21.3 in H_2O (5.33 in H_2O , per stage)
Water Vaporizer (1 stage)	91 g	0.1 in H ₂ O	1.3 in H ₂ O

Responses to Comments from Last Year

- An effort should be made to test this reformer with methanol: Tests
 conducted showed that methanol was the most easily reformed of all
 fuels evaluated. Productivity is >2x higher than rate for benchmark
 gasoline, or ~4 kWe/L.
- Engage an industrial partner to build a complete reforming system:
 Formal process underway.
- More studies evaluating catalyst performance and life:
 - Completed 1000 hour reformer durability test on benchmark gasoline.
 - Commercial and prototype WGS and PROX catalysts extensively studied in powder and engineered form.
 - Developed single channel reactors that provide flexibility in testing of engineered catalysts, provide data to develop kinetic model.